Bordetella Pertussis Real Time PCR Kit

Cat. No.: RD-0061-01

For use with LightCycler2.0/ LightCycler480 (Roche) real time PCR systems

For in vitro Diagnostic use only

User Manual

Shanghai ZJ Bio-Tech Co., Ltd.
www.liferiver.com.cn Tel: +86-21-51320182
trade@liferiver.com.cn Fax: +86-21-51320183
No.720 Cailun Road Zhangjiang High Technology Park, Shanghai, China
1. Intended Use

Bordetella pertussis real time PCR Kit is used for the detection of bordetella pertussis by real time PCR systems in samples like nasal and pharyngeal secretions, sputum, and etc.

2. Introduction

Bordetella pertussis is the cause of one of the most contagious human diseases known as whooping cough. *B. pertussis* causes severe coughing spells, with a characteristic “whoop” made as the affected person struggles to breathe through narrowed airway passages between coughing spasms. *B. pertussis* is a small gram-negative aerobic coccobacillus that colonizes the cilia of the nose and throat of infected humans. Toxins produced by *B. pertussis* paralyze the cilia and cause inflammation of the respiratory tract, interfering with the clearance of pulmonary secretions. This disease was first described in the 16th century and was one of the most frequent and severe diseases in infants in the United States, commonly resulting in morbidity and mortality among children prior to introduction of an effective vaccine. The incidence decreased dramatically following the introduction of the vaccine; however, incidence has been gradually increasing since the early 1980’s. One explanation for the increase might be the adaptation of *B. pertussis* bacteria to vaccine-induced immunity.

3. Principle of Real-Time PCR

The principle of the real-time detection is based on the fluorogenic 5’nuclease assay. During the PCR reaction, the DNA polymerase cleaves the probe at the 5’ end and separates the reporter dye from the quencher dye only when the probe hybridizes to the target DNA. This cleavage results in the fluorescent signal generated by the cleaved reporter dye, which is monitored real-time by the PCR detection system. The PCR cycle at which an increase in the fluorescence signal is detected initially (Ct) is proportional to the amount of the specific PCR product. Monitoring the fluorescence intensities during Real Time allows the detection of the accumulating product without having to re-open the reaction tube after the amplification.
4. Product Description

Bordetella pertussis real time PCR kit contains a specific ready-to-use system for the detection of Bordetella Pertussis by polymerase chain reaction (PCR) in the real-time PCR system. The master contains reagents and enzymes for the specific amplification of the bordetella pertussis DNA. Fluorescence is emitted and measured by the real time systems’ optical unit during PCR. The detection of amplified bordetella pertussis DNA fragment is performed in fluorimeter channel FAM. DNA extraction buffer is available in the kit and sputum samples are used for DNA extraction. In addition, the kit contains a system to identify possible PCR inhibition by measuring the VIC/JOE fluorescence of the internal control (IC). An external positive control(1×10⁷ copies/ml) contained, allow the determination of the gene load. For further information, please refer to section 10.3 Quantitation.

5. Kit Contents

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Type of Reagent</th>
<th>Presentation 25rxns</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DNA Extraction Buffer</td>
<td>1 vial, 1.8ml</td>
</tr>
<tr>
<td>2</td>
<td>Bordetella pertussis Reaction Mix</td>
<td>1 vial, 450μl</td>
</tr>
<tr>
<td>3</td>
<td>PCR Enzyme Mix</td>
<td>1 vial, 12μl</td>
</tr>
<tr>
<td>4</td>
<td>Molecular Grade Water</td>
<td>1 vial, 400μl</td>
</tr>
<tr>
<td>5</td>
<td>Internal Control (IC)</td>
<td>1 vial, 30μl</td>
</tr>
<tr>
<td>6</td>
<td>Bordetella pertussis Positive Control(1×10⁷ copies/ml)</td>
<td>1 vial, 30μl</td>
</tr>
</tbody>
</table>

6. Storage

- All reagents should be stored at -20°C. Storage at +4°C is not recommended.
- All reagents can be used until the expiration date indicated on the kit label.
- Repeated thawing and freezing (>3x) should be avoided, as this may reduce the sensitivity of the assay.
- Cool all reagents during the working steps.
- Reaction Mix should be stored in the dark.

7. Additionally Required Materials and Devices
• Biological cabinet

• *Real time* PCR system

• Desktop microcentrifuge for “eppendorf” type tubes (RCF max. 16,000 x g)

• Vortex mixer

• *Trypsin digestive Solution*

• *Real time* PCR reaction tubes/plates

• Cryo-container

• Pipets (0.5 μl – 1000 μl)

• Sterile filter tips for micro pipets

• Sterile microtubes

• Disposable gloves, powderless

• Biohazard waste container

• Refrigerator and Freezer

• Tube racks

8. Warnings and Precaution

• Carefully read this instruction before starting the procedure.

• For *in vitro* diagnostic use only.

• This assay needs to be carried out by skilled personnel.

• Clinical samples should be regarded as potentially infectious materials and should be prepared in a laminar flow hood.

• This assay needs to be run according to Good Laboratory Practice.

• Do not use the kit after its expiration date.

• Avoid repeated thawing and freezing of the reagents, this may reduce the sensitivity of the test.

• Once the reagents have been thawed, vortex and centrifuge briefly the tubes before use.

• Prepare quickly the Reaction mix on ice or in the cooling block.

• Set up two separate working areas: 1) Isolation of the RNA/ DNA and 2) Amplification/ detection of amplification products.
• Pipets, vials and other working materials should not circulate among working units.
• Use always sterile pipette tips with filters.
• Wear separate coats and gloves in each area.
• Do not pipette by mouth. Do not eat, drink, smoke in laboratory.
• Avoid aerosols

9. Sample Collection, Storage and transport

• Collect samples in sterile tubes;
• Specimens can be extracted immediately or frozen at -20°C to -80°C.
• Transportation of clinical specimens must comply with local regulations for the transport of etiologic agents

10. Procedure

10.1 DNA-Extraction

DNA extraction buffer is contained in the kit. Please thaw the buffer thoroughly and spin down briefly in the centrifuge before use.

1) Trypsin digestive Solution preparation

Add 10g trypsin to 200ml purified water and mix thoroughly. Adjust PH value to 8.0 with 2%NaOH solution. Add 2mL CaCl2 (25mmol/L), mix thoroughly and store at 4°C. Please incubate at 37°C for 10 minutes before use.

2) Estimate the volume of the sputum and add partes aequales of the Trypsin digestive Solution then vortex vigorously. Set at room temperature for 30 minutes. Transfer 0.5ml mixture to a new tube. Centrifuge the tube at 13000rpm for 5 minutes, carefully remove and discard supernatant from the tube without disturbing the pellet.

3) Add 1.0ml normal saline. Resuspend the pellet with vortex vigorously. Centrifuge at 13000rpm for 5 minutes. Carefully remove and discard supernatant from the tube without disturbing the pellet.

4) Repeat step 3)

5) Add 50μl DNA extraction buffer, close the tube then suspend the pellet with vortex vigorously. Spin down briefly in a table centrifuge.
6) Incubate the tube for 10 minutes at 100°C.

7) Centrifuge the tube at 13000 rpm for 10 minutes. The supernatant contains DNA extracted and is used for PCR template.

Attention:

A. During the incubation, make sure the tube is not open, as the vapor will volatilize into the air and may cause contamination in case the sample is positive.

B. The extraction sample should be used in 3 hours or stored at -20°C for one month.

C. DNA extraction kits are available from various manufacturers. You can also use your own extraction systems or the commercial kit depending on the yield. For DNA extraction, please comply with the manufacturer’s instructions.

10.2 Internal Control

It is necessary to add internal control (IC) in the reaction mix. Inhibition Control (IC) allows the user to determine and control the possibility of PCR inhibition.

Add the internal control (IC) 1µl/rxn and the result will be shown in the VIC/JOE channel.

10.3 Quantitation

The kit can be used for *quantitative* or *qualitative* real-time RT-PCR. A positive control defined as 1×10^7 copies/ml is supplied in the kit.

For performance of quantitative real-time PCR, Standard dilutions must prepare first as follow. Molecular Grade Water is used for the diluent.

Dilution is not needed for qualitative real-time PCR detection.

Take positive control (1×10^7 copies/ml) as the starting high standard in the first tube.

Respectively pipette **36ul** Molecular Grade Water into next three tubes. Do three dilutions as the following figures:
To generate a standard curve on the real-time system, all four dilution standards should be used and defined as standard with specification of the corresponding concentrations.

Attention:

A. Mix thoroughly before next transfer.

B. The positive control (1×10^7 copies/ml) contains high concentration of the target DNA. Therefore, be careful of dilution in order to avoid contamination.

10.4 PCR Protocol

The Master Mix volume for each reaction should be pipetted as follows:
1). The volumes of Reaction Mix and Enzyme Mix per reaction multiply with the number of samples, which includes the number of controls, standards, and sample prepared. Molecular Grade Water is used as the negative control. For reasons of unprecise pipetting, always add an extra virtual sample. \(n: \text{the number of reaction} \)

<table>
<thead>
<tr>
<th>Reaction Volume</th>
<th>Master Mix Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>17μl Reaction Mix</td>
<td>17μl \times (n+1)</td>
</tr>
<tr>
<td>0.4μl Enzyme Mix</td>
<td>0.4μl \times (n+1)</td>
</tr>
<tr>
<td>1μl internal control (IC)</td>
<td>1μl \times (n+1)</td>
</tr>
</tbody>
</table>

Mix completely then spin down briefly in a centrifuge.

1) Pipet 18μl Master Mix with micropipets of sterile filter tips to each Real time PCR reaction plate/tubes. Separately add 2μl DNA sample, positive and negative controls to different reaction plate/tubes. Immediately close the plate/tubes to
avoid contamination.

2) Spin down briefly in order to collect the Master Mix in the bottom of the reaction tubes.

3) Perform the following protocol in the instrument:

\[37^\circ C \text{ for } 2 \text{ min, 1 cycle; } \]
\[94^\circ C \text{ for } 2 \text{ min, 1 cycle; } \]
\[93^\circ C \text{ for } 5 \text{ sec, } 60^\circ C \text{ for } 30 \text{ sec, 40 cycles. } \]

Fluorescence is measured at 60°C

11. Data Analysis and Interpretation

The following results are possible:

1) A signal is detected in channel FAM. The result is positive: The sample contains Bordetella Pertussis DNA.

In this case, the detection of a signal in channel VIC/JOE (Internal control) is dispensable, as high initial concentrations of Bordetella Pertussis DNA can lead to a reduced or absent fluorescence signal of the internal control (competition).

2) In channel FAM no signal is detected, At the same time, a VIC/JOE signal from the Internal Control appears. The sample does not contain any Bordetella Pertussis DNA. It can be considered negative.

In the case of a negative Bordetella Pertussis PCR the detected signal of the internal control rules out the possibility of PCR inhibition.

3) Neither in channel FAM nor in channel VIC/JOE is a signal detected. A diagnostic statement can not be made. Inhibition of the PCR reaction.

For further questions or problems, please contact our technical support at river@liferiver.com.cn